

Asma Khalil St George's Hospital London, UK

The 20-22 wks scan

ISUOG Guideline

Facial cleft

Cleft lip

Cleft palate

Epidemiology

- Prevalence: 1 in 700 births
- More common in males than females and in Whites than Blacks
- In 50% of cases, both the lip and palate are affected
- In 25% only lip
- In 25% only palate
- Unilateral in 75% of cases (more common on left side) and bilateral in 25%

Facial cleft at 11-13 weeks

Retronasal triangle in a coronal view and the maxillary gap in the standard mid-sagittal view of face

Associated abnormalities

 <u>Chromosomal abnormalities</u> Mainly trisomies 13 and 18 Found in 1–2% of cases Unilateral cleft lip is not associated with chromosomal abnormalities

Associated abnormalities

- Syndromes Associated with >400 syndromes in 30% of cases The most common are:
 - **Goldenhar syndrome** (sporadic; anophthalmia, ear defects, facial cleft, facial macrosomia)
 - **Treacher–Collins syndrome** (AR or AD with 60% *de novo* mutations; hypoplasia of the maxilla and zygomatic bone, micrognathia, cleft palate, malformed or absent ears)
 - **Pierre–Robin Anomalad** (micrognathia or retrognathia, cleft palate and glossoptosis.

Goldenhar syndrome

Anophthalmia, ear defects, facial cleft, facial macrosomia

Treacher–Collins syndrome

Hypoplasia of the maxilla and zygomatic bone Micrognathia Cleft palate Malformed or absent ears

Treacher–Collins syndrome

Eyes/ eyelids

Lower lid evelashes aplasia Short and downslanting palpebral fissures Hypertelorism Notched upper/ lower eyelids (coloboma) Euryblepharon

Airways

Airway problems secondary to mandibular hypoplasia Pharyngeal hypoplasia Choanal atresia Tracheo-oesophageal fistula Small or obstructed nasal passages

Face

Facial characteristics - usually present bilaterally and symmetrically Parotid gland hypoplasia/ aplasia Pseudo macrorhinia

- apparent large beak like nose because of lack

of malar development and hypoplastic supraorbital ridges Sideburn hair on cheek 25%

Mouth

macrostomia 15 % Cleft palate 33% Volonhanmooal

Difficulties with swallowing and feeding secondary to musculoskeltal underdevelopment and cleft palate High-arched palate Dental anomalies 60% tooth agenesis 33% enamel deformities 20% malposition of maxillary first molars 13% Hypoplastic and retropositioned tongue

Pierre–Robin Anomalad syndrome

Pierre–Robin Anomalad syndrome

Hypoplastic mandible (primary anomaly)

> Glossoptosis (secondary anomaly)

Tongue obstructs palatal fusion (secondary anomaly)

Typical Robin facies with micrognathia

TA

U-shaped palate (secondary anomah)

Management

Investigations:

- Detailed ultrasound examination
- Invasive testing for karyotyping and array

Follow-up:

- Standard
- Prenatal consultation with multidisciplinary team

Delivery:

• Standard obstetric care and delivery

Prognosis

- Depends on the associated anomalies
- Isolated:
 - Good prognosis and normal survival
 - Surgical repair is at 3-6 months of age
 - Long-term in children with cleft lip and palate:
 - Dental abnormalities
 - Hearing and olfactory problems
 - Midface hypoplasia
 - Psychological problems

Long-term problems in children with Cleft lip & palate

- 25% have speech abnormalities requiring secondary palate surgery and speech therapy
- Dental anomalies:
 - Missing, extra, or malpositioned teeth
 - Require braces on permanent teeth
- Hearing abnormalities: may require myringotomy with placement of bilateral tympanotomy tubes
- Regular psychological screening:
 - Cognitive development, behaviour, and self-image

- Isolated:
 - 5% if 1 sibling or parent is affected
 - 10% if 2 siblings are affected
- Syndromic: varies

The 20-22 wks scan

Holoprosencephaly: facial defects

Trisomy 13

- Holoprocencephaly
- Anophthalmia/microphthalmia
- Abnormal nose
- Facial cleft
- Cardiac abnormalities
- Exomphalos
- Renal abnormalities
- Postaxial polydactyly
- Myelomeningocele

The Fetal Medicine Foundation

Trisomy 18

- Strawberry-shaped head
- Choroid plexus cysts
- Absent corpus callosum
- Ventriculomegaly
- Dandy-Walker complex
- Facial cleft
- Micrognathia
- Nuchal edema
- Cardiac defects
- Diaphragmatic hernia

- Esophageal atresia
- Exomphalos
- 2-vessel cord
- Renal defects
- Myelomeningocele
- Short limbs
- Radial aplasia/hypoplasia
- Overlapping fingers
- Talipes / rocker bottom feet
- Growth restriction

The Fetal Medicine Foundation

Trisomy 21

- Brachycephaly
- Mild ventriculomegaly
- Nasal hypoplasia
- Nuchal edema
- Cardiac defects (AVSD)
- Echogenic focus
- Duodenal atresia
- Hyperechogenic bowel
- Shortening of femur
- Shortening of humerus
- Saldal gap
- Clinodactily

The Fetal Medicine Foundation

Triploidy

- Molar placenta
- Asymmetrical growth restriction
- Ventriculomegaly (mild)
- Micrognathia
- Cardiac abnormalities
- Exomphalos
- Myelomeningocele
- 3rd-4th fingers syndactyly
- "Hitch-hiker" toe deformity

Hypertelorism

- Prevalence: 1 in 20,000 births
- **Diagnosis: interorbital diameter >95th percentile**
- Associated abnormalities:
- Chromosomal defects (mainly trisomy 13) are very rare
- Genetic syndromes are found in >50% of cases. The most common are:
 - <u>Frontonasal dysplasia</u> (sporadic; hypertelorism, midline facial cleft, abnormalities of the nose, cranium bifidum ocultum)
 - <u>Craniosynostosis</u> (Apert, Carpenter, Crouzon)
 - <u>Neu-Laxova syndrome</u> (AR; hypertelorism, microcephaly, ACC, contractures in the upper and lower limbs, FGR)
- Associated defects: frontal encephalocele and ACC

Neu-Laxova syndrome

Hypertelorism Microcephaly Contractures in the upper and lower limbs Fetal growth restriction

Frontonasal dysplasia

Apert craniosynostosis AD, syndactyly of hands and feet, heart defects

Crouzon craniosynostosis

Carpenter craniosynostosis AR, polysyndactyly

Management

Investigations:

- Detailed ultrasound examination
- Invasive testing for karyotyping and array

Follow-up:

- Isolated: follow-up should be standard
- Syndromic: antenatal care should be adjusted according to the risks of the condition

Delivery:

• Standard obstetric care and delivery

Prognosis

• Isolated:

generally good but in severe cases the cosmetic implications are important.

There might be impaired stereoscopic binocular vision

• Syndromic: generally poor with high risk of neurodevelopmental delay

Recurrence

Isolated: no increased risk of recurrence

Hypotelorism

- Prevalence: 1 in 20,000 births
- Diagnosis: inter-orbital diameter <5th centile
 Part of the midline migration defects together with holoprosecephaly (which is almost always present)
 The degree of hypotelorism can be extreme as in cyclopia

Associated abnormalities:

- Chromosomal defects (mainly trisomy 13) found in 50% of cases
- Genetic syndromes are very common

The most common is:

Meckel-Gruber syndrome (AR, lethal, occipital encephalocele, multicystic kidneys and post-axial polydactyly)

Meckel-Gruber syndrome

Meckel-Gruber syndrome

Management

Investigations:

- Detailed ultrasound examination (NEUROSONOGRAPHY)
- Invasive testing for karyotyping and array

Follow-up:

• Follow-up should be standard

Delivery:

• Standard obstetric care and delivery

Prognosis

- Part of trisomy 13: lethal
- Normal karyotype: high risk of neurodevelopmental delay depending on the degree of holoprosencephaly

Recurrence

- Isolated: no increased risk of recurrence
- Part of trisomy 13: 1%
- Part of an autosomal recessive condition: 25%

Micrognathia

• Prevalence: 1 in 1,500 births

Diagnosis:

Prominent upper lip and receding chin in the mid-sagittal view Polyhydramnios (>25 weeks) due to glossoptosis (normal tongue obstructing small oral cavity)

Micrognathia

Micrognathia or retrognathia

- ♦ Micrognathia: small mandible
- <u>Retrognathia</u>: normal dimensions of the mandible but posteriorly displaced
- Difficult to differentiate prenatally
- Often concomitant

Micrognathia

Associated abnormalities:

- Associated defects: frontal encephalocele and ACC
- Chromosomal abnormalities, mainly trisomy 18 and triploidy, are found in about 30% of cases
- Associated with >50 genetic syndromes, including:
 - <u>Pierre–Robin Anomalad syndrome</u>
 - <u>Treacher Collins syndrome</u>
 - <u>Otocephaly:</u> sporadic: severe micrognathia or agnathia, and mid-line defects, including holoprosencephaly, anterior encephalocele, cyclopia, aglossia, and mid-facial location of the ears

Severe micrognathia or agnathia Mid-line defects, including holoprosencephaly, anterior encephalocele, cyclopia Aglossia Mid-facial location of the ears

Management

Investigations:

- Detailed ultrasound examination
- Invasive testing for karyotyping and array
 Follow-up:
- Ultrasound every 4 weeks (AFV)

Delivery:

- Place: hospital with facilities for neonatal intensive care.
- Time: 38 weeks.
- **Method**: induction of labor aiming for vaginal delivery.
- A paediatrician should be present in the delivery room and be prepared to intubate the neonate.

Prognosis

- Neonatal mortality: >80% due to associated abnormalities
- In Pierre–Robin anomalad survival is good

Recurrence

- Isolated: no increased risk of recurrence
- Part of trisomies: 1%
- Part of genetic syndromes: 25% to 50%

Proboscis

soft tissue appendage projecting from just below the forehead

Single nostril

Arhinia

Binder syndrome (maxillo-nasal dysplasia or maxillo-nasal dysostosis)

- Cyst between the lower part of the orbit and the nose
- 75% unilateral and 25% bilateral
- 90% are due to delayed canalization of the lacrimal duct beyond 32 weeks

Differential diagnosis

• Anterior encephalocele

Often associated with intracranial abnormalities, such as ventriculomegaly

- Haemangioma
 Usually solid or multiseptated
- Dermoid cyst

Usually located superolaterally

Differential diagnosis

• Anterior encephalocele

Often associated with intracranial abnormalities, such as ventriculomegaly

- Haemangioma
 Usually solid or multiseptated
- Dermoid cyst

Usually located superolaterally

Counselling

- The incidence of chromosomal abnormalities and genetic syndromes is not increased.
- Resolve spontaneously either in the 3rd trimester or within the first 6 months of life
- Occasionally, nasolacrimal duct probing may be required to open the obstruction
- No increased risk of recurrence

Anophthalmia/Micophthalmia

- Microphthalmia: small eyeball
- Anophtalmia: absence of the eyeball, optic nerve and chiasma
- Both can be unilateral or bilateral.

Anophthalmia/Micophthalmia

Anophthalmia/Micophthalmia

Associated abnormalities:

- Chromosomal defects (mainly trisomy 13) found in >50% of cases
- Genetic syndromes are very common (>50% of cases)

The most common is:

Goldenhar syndrome (sporadic; anophthalmia, ear defects, facial cleft, facial macrosomia)

Fraser syndrome (AR; microphthalmia, facial cleft, tracheal atresia, bilateral renal agenesis, heart defects, syndactyly or polydactyly)
Fryns syndrome (AR; anophthalmia, facial cleft, micrognathia, ventriculomegaly, diaphragmatic hernia)

Goldenhar syndrome

Anophthalmia Ear defects Facial cleft

Fraser syndrome

Microphthalmia Facial cleft Tracheal atresia Bilateral renal agenesis Syndactyly or polydactyly CHD

Fraser syndrome

Microphthalmia Facial cleft Tracheal atresia Bilateral renal agenesis Syndactyly or polydactyly

Fryns syndrome

Anophthalmia Facial cleft Micrognathia Diaphragmatic hernia

- Unilateral or bilateral opacity of the lens
- Bilateral lesions are usually syndromic, whereas unilateral are usually related to fetal infection

Associated abnormalities:

- The incidence of chromosomal defects is not increased
- Genetic syndromes in 10% of cases
- The most common include:

<u>Walker-Warburg</u> (AR; type II lissencephaly, ACC, cerebellar malformations, cataract)

<u>Chondrodysplasia punctata</u> (X-linked recessive; cataract, symmetric rhizomelic shortening and epiphyseal calcifications).

 Congenital infection (especially rubella, toxoplasmosis, CMV) found in 30% of cases

Walker-Warburg

Chondrodysplasia punctata

- Solid tumor arising from the sphenoid bone, hard and soft palate, pharynx, tongue and jaw
- Grows into the oral or nasal cavity or intracranially
- Polyhydramnios (due to pharyngeal compression)

Epignathus

Differential diagnosis:

- Neck teratomas
- Encephaloceles
- Other tumors of the facial structures

Fetal dysmorphism

normal Bilateral cleft micrognathia craniosynostosis Binder

Limb buds	8 wks	
Femur & humerus	9 wks	
Tibia/fibula & radius/ulna	10 wks	
Digits of hands & feet	11 wks	
Body movements	9 wks	

Hand and foot abnormalities

Absent hands / feet	62%
Facial cleft	5%
Ventriculomegaly	9%
Spina bifida	14%
Major cardiac defect	33%
Diaphragmatic hernia	50%
Lethal skeletal dysplasia	50%

Amelia (complete absence of limb)

Acheiria (absence of the hand)

Acheiria (absence of the hand)

Limb Reduction Defects

- 1 per 20 000 births
- 'limb deficiency' or 'congenital amputation'.
- 50% multiple
- 25% associated abnormalities
- Syndromes (spradic)
 - aglossia-adactylia syndrome
 - Moebius sequence
- Causes:
 - amniotic band syndrome
 - exposure to a teratogen
 - vascular accident

Acheiria (absence of the hand)

Phocomelia (seal limb)

- Roberts syndrome (AR, tetraphocomelia and facial clefting)
- TAR syndrome
- Grebe syndrome (AR, marked hypomelia of upper and lower limbs, lower limbs more affected than upper extremities)

Drugs causing skeletal abnormalities

Drug	Skeletal	Other
Warfarin	Rhizomelia, stippled epiphyses, kyphoscoliosis	Depressed nasal bridge, renal cardiac, CNS, flat face
Sodium valproate	Reduction deformity arms, polydactyly, oligodactyly, talipes	Cardiac, CNS
Methotrexate	Mesomelia, hypomin skull, syndactyly, oligodactyly, talipes	CNS: NTD/Micrognathia
Vitmin A	Hypoplasia, aplasia arms bones	CNS, cardiac, NTD, cleft, DH, exomphalos
Phenytoin	Stippled epiphyses	Micrognathia, cleft, cardiac
Alcohol	Short long bones, reduction deformity arms, preaxial polydactyly arms, oligodactyly, stippled epiphyses	IUGR, cardiac
Cocaine	Reduction deformity arms +/- legs, hemivertebrae, absent ribs	CNS, cardiac, renal, ant abdo. Wall defects, bowel atresias

Aplasia–hypoplasia of the radius or ulna (club hand)

Radial clubhand

- frequently syndromatic
- absent thumb, thumb hypoplasia, thin first metacarpal, absent radius
 Ulnar clubhand
- usually isolated
- less common, ranges from mild deviations of the hand on the ulnar side of the forearm to complete absence of the ulna

Aplasia–hypoplasia of the radius or ulna (club hand)

Aplasia-hypoplasia of the radius or ulna (club hand)

Aplasia-hypoplasia of the radius or ulna (club hand)

Differential Diagnosis VATER Vertebral Anal atresia Tracheo-oesophageal fistula Renal

Polydactyly

- Postaxial: isolated disorder AD
- More in AfroCaribbean
- Postaxial white: syndromic AR

Postaxial Pre-axial

Polydactyly

• Fleshy nubbin or complete digit

Central polydactyly

- usually hidden between the long and the ring finger
- bilateral

• **AD**

 associated with hand and foot malformations

Post axial polydactyly

Oligodactyly

Syndactyly

Ectrodactyly

Ectrodactyly–ectodermal dysplasia–cleft syndrome Split hand–split foot–ectodermal dysplasia–cleft syndrome Lobster-claw deformity

EEC syndrome

- AD
- four extremities
- more severe deformities of the hands
- wide spectrum of ectodermal defects
 - dry skin
 - sparse hair
 - dental defects
 - defects of the tear duct.

Clenched hands

Trisomy 18

Sandal gap

Challenges in prenatal diagnosis

- Rare conditions
- Few case reports
- Other investigations; associated syndromes
- Incidental finding
- Systematic examination

