FETAL KIDNEY ASSESSMENT

22ND ANNUAL OBSTETRICAL ULTRASOUND SETTING THE STANDARD FOR 2019

OBJECTIVES

- Normal development
- Approach to Fetal GU system
- Renal Agenesis and Ectopia
- Cystic Renal Diseases
- Echogenic Kidneys
- Urinary Tract Dilatation
- Renal Tumors

NORMAL DEVELOPMENT FETAL KIDNEYS

DEVELOPMENT OF FETAL KIDNEY

- 3 sets of fetal kidneys:
 - Pronephros
 - Mesonphros
 - Metanephros (permanent)
- 2 key structures are ureteric bud and metanephric mass
- Develops in pelvis and ascends to normal position by 11th week

EARLY APPEARANCE FETAL KIDNEYS

- Kidneys visible 99% fetuses by 12-13 weeks
- Early sonographic appearance:
 - Oval hyperechoic paravertebral masses
 - Echogenicity similar to liver or spine
 - Corticomedullary differentiation (CMD) by 14-15 weeks
 - Reference charts for size
 - Consistent renal/abdominal circumference ratio 0.27-0.3

SECOND TRIMESTER APPEARANCE

- More isoechoic (less echogenic than liver/spleen)
- CMD should always be seen > 18 weeks
- CDS can confirm renal arteries

BLADDER AND FLUID

- Kidneys start producing urine around 9 weeks
- By 14-16 weeks, 2/3 of AFV from kidneys
- Bladder visible 98% by 12-13 weeks
- Bladder fills/empties around every 25 min

MEGACYSTIS FIRST TRIMESTER

- Sagittal bladder diameter>7 mm
- 7-15 mm
 - 90% resolve if no chromosomal abnormality
- >15 mm almost all have obstructive uropathy

APPROACH TO FETAL GU ASSESSMENT

THINGS TO CONSIDER

- Is the bladder present?
- Are kidneys present?
 - number, position, size, echogenicity, cysts
- Is urinary tract dilated?
 - level of obstruction
- Unilateral or bilateral?
- Oligohydramnios?
- Fetal gender?

GENITOURINARY ABNORMALITIES

Nephropathy

MCKD Agenesis PCKD Obstructive Uropathy

UPJ UVJ PUV Urethral atresia

Syndromes

Tri 13
Meckel Gruber
Beckwith Wiedemann
VHL

APPROACH

- Are kidneys present and do they look normal?
- Is bladder seen? Normal size?
- Is fluid (ie. lung maturation) compromised?
- Is problem nephropathy or uropathy? or both?
- Hereditary or non-hereditary?
- Antenatal follow up?
- Postnatal follow up?

KEY POINTS TO REMEMBER

- "B-F-F-F"
 - Bladder?
 - Fluid?
 - Familial?
 - Followup?

RENAL AGENESIS AND ECTOPIA

- Lethal
- Ureteric bud fails to develop
- 1 in 4000 births
- Recurrent risk 4% for subsequent pregnancies
- Risk of silent renal GU anomalies in family members

- Severe oligohydramnios/anhydramnios
- Non visualization of bladder for > 1 hour
 - Warning: Urachal diverticulum or retrograde filling
- Absent renal arteries

- 1 in 1000 births
- Contralateral kidney may be enlarged
- Contralateral renal anomalies:
 - VUR
 - Associations: Cardiac, skeletal, GI
- If isolated, good prognosis
- Recurrence 1% if parents normal, 7% if one parent has solitary kidney

Hemivertebra

ECTOPIC KIDNEY

- Incidence of ectopic kidney 1 in 1200
- Pelvic most common
 - scan adjacent to bladder and iliacs
- Crossed renal ectopic:
 - with fusion
 - without fusion
 - *distinguished from duplex by angulation between two kidneys
- Associations: Genital, skeletal, GI, VUR

ECTOPIC KIDNEY

0.5 1003 difff 0

31 fps

G73 DR 70 A 4 P.1

ECTOPIC KIDNEY FOLLOW UP

DUPLEX KIDNEY

- Two ureteral buds give rise to duplex kidney
- Two pelvicaliceal systems
- Partial or complete ureteral duplication
- Upper and lower pole moieties in same plane
- Obstruction upper pole moiety + ureterocele common
- Reflux common lower pole moiety

DUPLEX COLLECTING SYSTEM

DUPLEX COLLECTING SYSTEM

DUPLEX COLLECTING SYSTEM

CYSTIC RENAL DISEASES

CLASSIFICATION OF CYSTIC RENAL DISEASES

- Hereditary
 - ARPCKD
 - ADPCKD
 - Glomerulocystic disease
 - Medullary cystic dysplasia
- Non-Hereditary
 - MCDK
 - Obstructive dysplasia

- 1 in 20,000 live births
- Enlarged hyperechoic smooth kidneys
- Evolution of cystic changes through third trimester
- Cortex is spared hypoechoic rim sign
- Reversal of CMD can be seen
- Low fluid
- Recurrence risk: 25%

21 week anatomy scan Enlarged kidneys: 26mm and 28 mm

Postnatal Images

FR 29Hz S1 2D 70% C 61 P Low Gen

ADPCKD

- 1 in 800 live births
- Moderately enlarged kidneys with hyperechoic cortices
- Usually normal AFV
- Cysts usually don't develop until adulthood
- Association: duplex, MCDK, UPJ obstruction
- Ask about family history, scan parents

GLOMERULOCYSTIC KIDNEYS

- Cysts corresponding to dilated Bowman spaces
- Nonspecific origin
 - Sporadic
 - Familial
 - Syndromes (TS, Tri 13, Zellwegger, Short rib polydactyl, Orofaciodigital syndrome type 1)
- Classic appearance is enlarged kidney with subcapsular cortical cysts

Callen 2013

MEDULLARY CYSTIC DYSPLASIA

- Cysts involve medullary tubules
- Associated with many syndromes including Meckel-Gruber
- Present early with enlarged kidney, pseudo CMD, prominent medulla

Callen 2013

MECKEL GRUBER SYNDROME

Encephalocele

Polydactyly

Kidney Cysts

MULTICYSTIC DYSPLASTIC KIDNEY

- Unilateral noncommunicating cyst of varying size/shape
- Irregular contours
- No normal tissue between cysts, no collecting system
- Can occur in upper moiety of duplex
- May involute during pregnancy or after birth
- Association: UPJ, VUR, agenesis
- Unilateral or bilateral (up to 25%)

MCDK VS HYDRONEPHROSIS

Irregular contour
Cysts vary in size/shape
Noncommunicating
Dysplastic echogenic tissue

Smooth contour Communicating 'cysts' Rim of renal tissue

QUERY EARLY MCDK

FOLLOW UP: UNILATERAL MCDK

OBSTRUCTIVE CYSTIC RENAL DYSPLASIA

- Unilateral (UPJ or UVJ)
- Bilateral (bladder outlet obstruction)
- Variable appearance
- Usually cysts are subcapsular

- Recall: Early in pregnancy normal kidney is echogenic
- Finding not a diagnosis
- Differential considerations:
 - PCKD (AR and AD)
 - Syndomes: Tri 13, Meckel Gruber, Beckwith Wiedemann, Perlman, Zellwegger, Bardet-Biedl
 - Renal vein thrombosis (risks: maternal diabetes,TTTS)
 - Infection: CMV
 - Congenital nephrotic syndrome (rare**) assoc. thick placenta
 - May be normal

- COMMON:
 - Physiologic variation
 - Obstructive
 - ARPCKD or ADPCKD

- UNCOMMON:
 - Meckel-Gruber
 - Bardet-Biedl
 - Aneuploidy
 - Infection
 - RVT
 - Congenital Nephrotic Syndrome
 - Overgrowth Syndromes
 - Beckwith-Wiedeman
 - Vater syndrome

- Prognosis defined by etiology
- Assess for:
 - Unilateral vs bilateral
 - Oligohydramnios
 - Obstruction
 - Parenchymal changes
 - CMD?
 - Cysts?

Hyperechoic Kidneys	Corticomedullary Differentiation
Beckwith Weideman, Perlman, Zellwegger, Infection, Intoxication, MCD, maternal, normal variant	Present
Obstructive dysplasia, ARPCKD	Absent
ADPCKD, Diabetes, Bardet Biedl, RVT, Meckel Gruber, Chromosomal, Nephrotic	Variable
Some ARPCKD, metabolic	Reversed

URINARY TRACT DILATATION

UPPER URINARY TRACT DILATATION

- Upper tract dilatation most common abnormality 1-5%
- Measure AP diameter renal pelvis (APD) in transverse plane
- Hydronephrosis: dilatation of pelvis and calyces
- Pyelectasis: dilatation of pelvis only
- Various etiologies:
 - Transient/physiologic
 - VUR
 - Obstructive

UPPER URINARY TRACT ETIOLOGY

HOW TO MEASURE

• Transverse plane measure AP diameter of renal pelvis:

URINARY TRACT DILATATION THRESHOLD

- Langer et al 1996
 - 5 mm < 28 wks
 - 10 mm > 28 weeks
- Gringon et al 1986
 - Grade 1: APD 1 cm no caliectasis
 - Grade 2: APD 1-1.5 cm and no caliectasis
 - Grade 3: APD > 1.5 cm + slight caliectasis
 - Grade 4: APD > 1.5 cm + moderate caliectasis
 - Grade 5: APD > 1.5 cm + severe caliectasis + cortical atrophy

SFU GRADING

Table 1 Society of Fetal Urology grading system of congenital hydronephrosis			
Grade	Central renal complex	Renal parenchymal thickness	Ultra sound scan
0	intact	Normal	
I	Slight splitting of pelvis	Normal	
II	Evident splitting of pelvis and calices	Normal	
III	Wide splitting of pelvis and calices	Normal	
IV	Further splitting of pelvis and calices	Reduced	

PYELECTASIS CUT-OFF VALUES

- SFU GRADING SECOND TRIMESTER:
 - Mild 4-7 mm
 - Moderate 7-10 mm
 - Severe > 10 mm
- SFU GRADING THIRD TRIMESTER:
 - Mild 7-9 mm
 - Moderate 9-15 mm
 - Severe > 15 mm
- Lee et al study
 - >15 mm 88% chance post natal pathology

SFU CONSENSUS STATEMENT

 AP diameter of the renal pelvis of > 4 mm in the 2nd trimester and > 7 mm in 3rd trimester warrants further follow up in prenatal period

- Follow up:
 - Repeat US in 3rd trimester
 - Ultrasound at birth and 1 month

PROGNOSTIC FACTORS

- 80% of mild (4-7 mm) spontaneously resolve
- Severity of dilatation correlated to higher risk of pathology EXCEPT for VUR
- Progression of dilatation through to third trimester worse prognosis
 - 12% with isolated 2nd trimester UT dilatation had postnatal pathology
 - 40% if observed in both 2nd and 3rd trimester
- Worrisome findings: oligohydramnios, abnormal cortex, early GA at diagnosis

PROGNOSIS AHN

- Lee et al, 2006
 - Meta-analysis
 - 36% have underlying uropathy
 - 12% mild < 9 mm T3
 - 45% moderate 9-15 mm T3
 - 88% > 15 mm T3

UTD CONSENSUS 2014

- Consensus Statement 2014
- ACR, AIUM, ASPN, SFU, SMFM, SPR, SRU
- Recommendations:
 - Use of term UT dilatation
 - Classify based on:
 - APD, Caliceal dilatation (major/minor), parenchymal thickness, parenchymal appearance, ureter, bladder
 - Cut offs:
 - 16-27 weeks < 4 mm
 - \geq 28 weeks < 7 mm
 - Postnatal (> 48h) < 10 mm

POSTNATAL WORK UP

Low Risk:

- One additional ultrasound > 32 weeks
- Post natal ultrasound at birth (>48 hr) and 1 month
- Modify aneuploidy risk if needed

• High Risk:

- Follow up ultrasound 4-6 weeks after presentation
- Postnatal ultrasound at birth and 1 month
- Specialist consultation

OUTCOME ISOLATED ANTENATAL HYDRO

- Sighu Pedatr Nephrol (2006)
 - HSC
 - 7 articles selected that used SFU grading system
 - SFU grade 1-2 (APD < 12 mm)
 - 98% resolve, stabilize or improve
 - Conclusion: minimal investigation require
 - SFU grade 3-4 (APD > 12 mm)
 - more variable outcome

APD AS PREDICTOR FOR POSTNATAL SX

- Zhang et al, Pediatric Urology 2018
 - Systematic review and meta-analysis
 - 5 studies with total 1159 patients
 - Using 15 mm as cut off for APD:
 - Sensitivity 0.81
 - Specificity 0.78
 - Conclusion: APD >15 mm moderate diagnostic value predicting postnatal surgery

OUR CURRENT PRACTICE

- Isolated Antenatal Hydronephrosis:
 - 18-22 week anatomy APD > 4 mm, repeat at 32 weeks
 - If APD < 10 mm, no postnatal investigation
 - For APD \geq 10 mm:
 - refer to nephrology clinic for postnatal management
 - trimethoprim 2 mg/kg/day started at birth
 - postnatal ultrasound after 48h

ANTENATAL HYDRONEPHROSIS

ANTENATAL HYDRONEPHROSIS

MEGAURETER

- Dilated ureter without bladder dilatation
- Usually result of UVJ obstruction
- May be associated with duplication of collecting system with ectopic ureterocele
- Increased risk of:
 - Unilateral agenesis
 - MCDK
 - Hirschsprung disease

BLADDER OUTLET OBSTRUCTION (BOO)

- 1 in 3000 at 11-15 weeks
- Causes:
 - PUV
 - Urethral atresia/stricture
 - Prolapsed ureterocele
 - Prune Belly Sundrome
 - Megalourethra
 - Megacystic-Microcolon-intesntinal hpoperistalsis syndrome (MMIHS)

POSTERIOR URETHRAL VALVES

- Membranous folds in posterior urethra
- Most common of bladder outlet obstruction
- Predominantly male

Keyhole Sign

MMIHS

- All female
- Thin walled bladder
- Dilated ureters
- Hydronephrosis
- Normal parenchyma
- Normal AFV clue to diagnosis

RENAL TUMORS

RENAL TUMORS

- Congenital mesoblastic nephroma most common real neoplasm in fetus and newborn
- Benign hamartoma made up of spindle cells
- Wilms tumor (malignant epithelial lesion) rare
- Features:
 - Echogenic solid mass replacing kidney
 - Assoc. with polydramnios
- Adrenal mass?
 - Neuroblastoma most common

Thank you

Kalesha Hack kalesha.hack@sunnybrook.ca